Hhip regulates zebrafish muscle development by both sequestering Hedgehog and modulating localization of Smoothened.
نویسندگان
چکیده
Sharp borders between cells with different developmental fates are important for patterning of invertebrates, but are not well understood in vertebrates. Zebrafish slow muscle cells develop from adaxial cells, a one-cell-diameter-thick pseudo-epithelium immediately adjacent to the notochord. Hedgehog (Hh) signals from notochord specify adaxial cells to form slow muscle cells. Cells next to adaxial cells form fast muscle. This suggests that Hh signaling is locally regulated to produce a sharp border that separates slow and fast muscle precursors. To understand how Hh activity is locally regulated, we characterized the dynamic roles of Hhip, a protein that binds Hedgehog at the cell surface. Hhip is strongly expressed by adaxial cells and, together with Patched, the Hedgehog receptor, limits transduction of the Hedgehog signaling by Smoothened to adaxial cells. Hhip protein lacking its membrane associated domain still suppresses Hh activity but no longer acts synergistically with Patched. Hhip and Smoothened colocalize at the cell surface and, in response to Hedgehog, internalize together. Knockdown of Hhip blocks Smoothened internalization while increasing Hedgehog signaling and slow muscle formation. These data support a model in which Hhip regulates muscle development both by sequestering Hedgehog and by modulating localization of Smoothened.
منابع مشابه
Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous Shh signaling
The distribution of Sonic Hedgehog (Shh) is a highly regulated and critical process for development. Several negative feedback mechanisms are in place, including the Shh-induced upregulation of Hedgehog-interacting protein (Hhip). Hhip sequesters Shh, leading to a non-cell autonomous inhibition of the pathway. Hhip overexpression has a severe effect on neural tube development, raising the quest...
متن کاملSmoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase.
Smoothened, a heptahelical membrane protein, functions as the transducer of Hedgehog signaling. The kinases that modulate Smoothened have been thoroughly analyzed in flies. However, little is known about how phosphorylation affects Smoothened in vertebrates, mainly, because the residues, where Smoothened is phosphorylated are not conserved from Drosophila to vertebrates. Given its molecular arc...
متن کاملThe miR-30 MicroRNA Family Targets smoothened to Regulate Hedgehog Signalling in Zebrafish Early Muscle Development
The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target gen...
متن کاملAnalysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity.
Despite extensive studies, there are still many unanswered questions regarding the mechanism of hedgehog signaling and the phylogenic conservation of hedgehog function in vertebrates. For example, whether hedgehog signaling in vertebrates requires smoothened is unclear, and the role of hedgehog activity in zebrafish is controversial. We show that inactivation of smoothened by retroviral inserti...
متن کاملThe zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity.
Hedgehog proteins mediate many of the inductive interactions that determine cell fate during embryonic development. Hedgehog signaling has been shown to regulate slow muscle fiber type development. We report here that mutations in the zebrafish slow-muscle-omitted (smu) gene disrupt many developmental processes involving Hedgehog signaling. smu(-/-) embryos have a 99% reduction in the number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 297 1 شماره
صفحات -
تاریخ انتشار 2006